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Abstract

This research was performed to expand AFIT’s Radio Frequency “Distinct Native

Attribute” (RF-DNA) fingerprinting process to support IEEE 802.15.4 ZigBee communi-

cation network applications. Current ZigBee bit-level security measures include use of

network keys and Media Access Control (MAC) lists which can be subverted through

interception and spoofing using open-source hacking tools. This work addresses device

discrimination using Physical (PHY) waveform alternatives to augment existing bit-level

security mechanisms. ZigBee network vulnerability to outsider threats was assessed using

Receiver Operating Characteristic (ROC) curves to characterize both Authorized Device

ID Verification performance (granting network access to authorized users presenting true

bit-level credentials) and Rogue Device Rejection performance (denying network access to

unauthorized rogue devices presenting false bit-level credentials).

Radio Frequency ‘Distinct Native Attribute’ (RF-DNA) features are extracted from

time-domain waveform responses of 2.4 GHz CC2420 ZigBee transceivers to enable

human-like device discrimination. The fingerprints were constructed using a “hybrid”

pool of emissions collected under a range of conditions, including anechoic chamber

and an indoor office environment where dynamic multi-path and signal degradation

factors were present. The RF-DNA fingerprints were input to a Multiple Discriminant

Analysis, Maximum Likelihood (MDA/ML) discrimination process and a 1 vs. many

“Looks most like?” classification assessment made. The hybrid MDA model was

also used for 1 vs. 1 “Looks how much like?” verification assessment. ZigBee

Device Classification performance was assessed using both full and reduced dimensional

fingerprint sets. Reduced dimensional subsets were selected using Dimensional Reduction

Analysis (DRA) by rank ordering 1) pre-classification Kolmogorov-Smirnov (KS)-Test

p-values and 2) post-classification Generalized Relevance Learning Vector Quantization-
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Improved (GRLVQI) λi feature relevance values. Assessment of Zigbee device ID

verification capability included both Authorized Device ID Verification and Rogue Device

Rejection.

Device Classification performance using full-dimensional fingerprints comprised

of NF=729 features achieved an arbitrary benchmark of average correct classification

%C>90% (across all devices) for S NR≥10.0 dB. Performance using DRA≈66% (NF̂=243)

reduced dimensional subsets was marginally poorer and yielded a “gain” of G≈−1.0 dB at

%C=90% relative to full-dimensional performance; gain is the reduction in required S NR

for two systems, methods, etc., to achieve a given %C. Additional KS-Test and GRLVQI

DRA feature selection was performed and classification performance assessed using the

top-ranked NF̂=200, 100, 50, and 25 features. Relative to the %C>90% benchmark, the

KS-Test and GRLVQI selected feature sets required the same S NR≈10.0 dB (NF̂=243)

to S NR≈18.0 dB (NF̂=50). For NF̂=25, KS-Test selected features failed to meet the

benchmark while GRLVQI selected features achieved the benchmark at S NR≈30.0 dB.

Authorized Device ID Verification performance was evaluated using the NF̂=50 DRA

feature set. Results indicate the existence of a device dependent threshold whereby all

authorized devices achieve an arbitrary True Verification Rate (TVR>90%) and False

Verification Rate (FVR<10%) benchmark for both DRA methods. Rogue Device Rejection

was assessed using unauthorized rogue devices, with each rogue device falsely presenting

a claimed ID matching each of the authorized device IDs. Considering an arbitrary

Rogue Rejection Rate (RRR>90%) benchmark, ROC curve analysis for Rogue Device

Rejection indicated that performance using KS-Test and GRLVQI selected feature sets were

consistent. The KS-test DRA selected feature sets achieved RRR>90% in 21, 29, and 30 of

36 rogue scenarios using NF̂=100, 50, and 25 top-ranked features, respectively. Similarly,

the GRLVQI DRA selected features achieved RRR>90% in 23, 28, and 30 of the 36 rogue

scenarios using NF̂=100, 50, and 25 top-ranked features, respectively.
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USING RF-DNA FINGERPRINTS TO DISCRIMINATE ZIGBEE DEVICES IN AN

OPERATIONAL ENVIRONMENT

I. Introduction

1.1 Operational Motivation

Wireless Personal Area networks (WPANs) are increasing in popularity and are widely

deployed in office buildings, factories, home networks, and hospitals. The Institute of

Electrical and Electronics Engineers (IEEE) 802.15.4 Media Access Control (MAC) and

Physical-layer (PHY) standards provide a low power, low-data-rate WPAN foundation

on which network (NWK) and application (APL) layers are built, such as the ZigBee

specification [26]. ZigBee networks’ low implementation costs and low-complexity make

them a viable solution for applications such as industrial control and monitoring [14], home

automation, remote metering [46], patient vital sign monitoring [7], security systems [45],

and asset tracking [50]. Depending on the application, ZigBee networks transmit sensitive

personal information, control physical systems (valves, fans, lighting, doors, etc.), and

monitor critical sensors. Improved security measures is an essential component in allowing

ZigBee-based networks to be highly reliable and secure. The need for improving network

security is motivated by open source tools such as KillerBee [49] and Api-do [41]

which increase ZigBee network vulnerability and enable unauthorized rogue devices to

conduct packet replay, network key sniffing, MAC address spoofing, malicious network

impersonation, and denial of service type attacks.

Wireless networks are characterized by the seven layer Open Systems Interconnect

(OSI) model such as shown in Fig. 1.1 [1]. Traditionally, systems have predominantly

relied on ”bit-level” security mechanisms implemented in the Network (NWK) and

1



Figure 1.1: Multi-layer Open Systems Interconnect (OSI) network model [1].

Data Link (DLL) layers while generally ignoring the potential for PHY-layer security

augmentation. Exploiting this potential has been a major motivation for ongoing research

at Air Force Institute of Technology (AFIT) which exploits wireless device PHY waveform

features. This is accomplished using Radio Frequency ‘Distinct Native Attribute’ (RF-

DNA) fingerprints which provide unique, human-like device discrimination using RF-DNA

features that vary due to component manufacturing differences, component tolerances,

design differences, and device aging. The inherent RF-DNA is difficult to mimic and

replicate, allowing it to be useful in discrimination between multiple devices. PHY layer

security using RF-DNA fingerprints is a viable solution for augmenting higher layer (NWK

and DLL) bit-level security mechanisms.
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1.2 Technical Motivation

AFIT’s RF-DNA fingerprinting process has evolved into the process shown in Fig. 1.2.

This process is constantly expanding by considering new signal types, new feature types,

new classification methods, and new device ID verification methods. Over the past several

years, extensive research has been conducted at AFIT [21, 23, 24, 28–30, 34, 35, 37–

40, 42, 47, 48] and contribution has been made to a larger body of research being

conducted by numerous researchers [8–10, 16–19, 27]. AFIT’s research activity has

predominately focused on RF-DNA fingerprinting for Device Classification using various

wireless communication signal types, such as Global System for Mobile Communication

(GSM) cellular phones [40, 47], IEEE 802.11 WiFi [21, 23, 24, 28, 29, 35, 42], and IEEE

802.16 WiMAX [34, 35, 37, 38, 48]. This research is no exception and the RF-DNA

process is adopted here to assess IEEE 802.15.4 ZigBee Device Classification. However,

there has been a recent shift in AFIT research and this research is among the first few efforts

to consider Device ID Verification using RF-DNA fingerprints.

3



Figure 1.2: AFITs RF-DNA Fingerprinting Overview
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1.3 Previous vs. Current Research

Table 1.1 provides a summary of technical areas that have been previously addressed

and areas addressed under this research.

Table 1.1: Technical Areas in Previous related work and Current research contributions.
The × symbol denots areas addressed.

Technical Area Previous Work Current Research

Addressed Ref # Addressed Ref #

1D Time Domain (TD) ×
[8, 17, 28, 29, 43, 47]

× [11, 12]
[42, 43, 47, 48]

1D Spectral Domain (SD) × [38, 48]

2D Wavelet Domain (WD) × [28–30]

2D Gabor (GT/GWT) × [21, 34, 35, 37, 38]

Signal Type

802.11a WiFi × [21, 28–30, 35, 48]

GSM Cellular × [39, 40, 47]

802.16e WiMax × [34, 35, 38, 48]

802.15.4 ZigBee × [31] × [11, 12]

Classifier Type

MDA/ML ×
[28–30, 42, 43, 47, 48]

× [11, 12]
[21, 31, 34, 38–40]

GRLVQI × [21, 28, 29, 35, 37]

LFS × [4–6, 21–24]

Dimensional Reduction Analysis (DRA)

GRLVQI × [28, 29, 33, 35, 37] × [12]

LFS × [20, 21]

KS-Test × [31] × [12]

Device ID Verification

Authorized Device × [35, 37] × [12]

Rogue Device Rejection × [35, 37] × [12]

5



1.4 Document Organization

The remainder of this document is organized as follows:

• Chapter 2 - Background: Provides fundamental information on ZigBee IEEE

802.15.4 signal structure. Describes the previously established procedure for

extracting time-domain features. Explains Multiple Discriminant Analysis

(MDA) model development and Maximum Likelihood (ML) Classification.

• Chapter 3 - Research Methodology: Describes the specific methodology used

in this research to implement RF-DNA fingerprinting using experimentally

collected ZigBee emissions, including emission collection and post-collection

processing. Describes RF-DNA fingerprint quantitative Dimensional Reduc-

tion Analysis (DRA) methods, including: 1) pre-classification KS-Test p-value

ranking, and 2) post-classification GRLVQI λi relevance ranking. Details the

methodology used to perform ZigBee device discrimination, including Device

Classification, Authorized Device ID Verification, and Rogue Device Rejection.

• Chapter 4 - Results and Analysis: Provides results and performance analysis

for full-dimensional and DRA reduced dimensional RF-DNA fingerprinting

using KS-Test and GRLVQI selected feature sets. Device classification

performance for full-dimensional and reduced dimensional feature sets.

This includes assessment of Device Classification, Authorized Device ID

Verification, and Rogue Device Rejection capability.

• Chapter 5 - Summary and Conclusions: Presents a summary of research

activity, significant results, and recommendations for future research.
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II. Background

This chapter provides the technical background information supporting development

of the methodology described in Chap. 3 and interpretation of results presented

in Chap. 4. Section 2.1 provides details for ZigBee-based networks built on IEEE

802.15.4 standard for wireless low-data-rate Wireless Personal Area Networks (WPAN).

Section 2.2 explains the process for generating RF-DNA fingerprints that are comprised

of statistical features extracted from time-domain emission responses. A description of

Multiple Discriminant Analysis (MDA) model development and Maximum Likelihood

(ML) classification processes are described in Sections 2.3 and 2.4, respectively, and are

the foundation for MDA/ML processing used in developing Chap. 3 methodology.

2.1 ZigBee Signal Structure

ZigBee technology is used for WPANs and is seen in many applications requiring

a low data rate, long battery life, and low cost solution. These applications include

home automation, industrial control and monitoring, remote sensing/metering, medical

equipment and patient monitoring, asset tracking systems, security systems, lighting and

temperature control, etc. ZigBee-based networks are built on the WPAN IEEE 802.15.4

standard which defines the Physical (PHY) and Media Access Control (MAC) layer

structure. The ZigBee specification [51] defines the Network (NWK) layer specifications

and provides a framework for application programming in the Application (APL) layer.

Figure 2.1 shows the MAC frame format and PHY layer structure used by ZigBee [26].

As described in the 2.4 GHz IEEE 802.15.4 standard, the PHY Protocol Data Unit (PPDU)

packet structure consists of 1) a Synchronization Header (SHR) response which allows a

receiving device to synchronize and lock onto the bit stream, 2) a PHY Header (PHR)

response which contains frame length information, and 3) a variable length payload which

7



carries the MAC sublayer frame. The SHR region in Fig. 2.2 is comprised of a 32-bit

preamble and an 8-bit Start-of-Frame Delimiter (SFD) sequence. The preamble sequence

is designed for acquisition of symbol chip timing and is composed of a 32-bit binary

zero string. The SFD region is used to signify the end of preamble and consists of a

predefined 8-bit sequence of [1 1 1 0 0 1 0 1]. Information contained with the SHR region

remains constant and is independent of device emissions, individual device types, device

applications, etc. Early research reported in [11] exploited the preamble-only region of

ZigBee emissions for RF-DNA fingerprinting. Subsequent analysis revealed a greater level

of device discrimination can be realized using the entire SHR region (preamble and SFD).

Thus, the methodology described in Chap. 3 and results in Chap. 4 are based exclusively

on RF-DNA exracted from the SHR region.

Figure 2.1: Data frame PHY and MAC layer structures for a ZigBee packet [26].

2.2 Time-Domain RF-DNA Fingerprint Generation

The RF-DNA fingerprints for an emission Time Domain (TD) response are derived

from its instantaneous amplitude (a), phase (φ) and frequency ( f ) responses, as described

in [11, 12, 30, 33, 39, 40, 43, 48]. The corresponding characteristic sequences, having

8



Figure 2.2: PHY Protocol Data Unit (PPDU) packet structure for IEEE 802.15.4 [26].

elements denoted by a[n], φ[n], and f [n], are generated using NS complex I-Q signal

samples s[n]=sI[n]+ jsQ[n] from the specific Region Of Interest (ROI) in the collected

signal where the mean value is removed (centered) and then normalized (division by

maximum value) [30, 43]. Elements of the emission TD response are calculated by,

a[n] =

√
s2

I [n] + s2
Q[n], (2.1)

φ[n] = tan−1
[

sQ[n]
sI[n]

]
, for sI[n] , 0, (2.2)

f (n) =
1

2π

[
dφ(n)

dt

]
. (2.3)

Mean removal and normalization for each of the NS elements in characteristic

sequences, {a[n]}, {φ[n]}, and { f [n]}, is achieved using,

āc(n) =
a[n] − µa

max
n
{ac[n]}

, (2.4)

φ̄c[n] =
φ[n] − µφ

max
n
{φc[n]}

, (2.5)

f̄c[n] =
f [n] − µ f

max
n
{ fc[n]}

, (2.6)

where n = 1, 2, 3, . . . ,NS , and µa, µφ and µ f are the means of {a[n]}, {φ[n]}, and { f [n]}

calculated across NS samples, and max{·} denotes the maximum value of each feature

sequence’s centered magnitude.

RF-DNA fingerprints are compromised of statistical features extracted from instanta-

neous TD responses over a specific ROI in the collected signal [11, 12, 30, 33, 39, 40, 43,
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1 2 3 4 5 NR - 1 NR

NR + 1

fR3
σ – Std Deviation

σ2 – Variance

γ – Skewness

κ – Kurtosis

fR3 = [ σR3, σ
2
R3, γR3, κR3 ]

Arbitrary Feature Sequence

Figure 2.3: Representative illustration of regional fingerprint marker generation for an
arbitrary ROI sequence using NR+1 total subregions and NM=4 statistical metrics [33].

48]. The selected ROI is a response region that is 1) ideally consistent across all collected

signals, and 2) independent of data modulation and device ID information. As shown in

Fig. 2.3, statistical RF-DNA features of standard deviation (σ), variance (σ2), skewness

(γ), and kurtosis (κ) are calculated over the ROI to form regional fingerprint markers gen-

erated by: 1) dividing each selected characteristic sequence {a[n]},{φ[n]}, and { f [n]} into

NR contiguous, equal length subsequences such that NS /NR is an integer, 2) calculating NM

metrics for each subsequence, plus the entire fingerprinted region as a whole (NR+1 total

regions), and 3) arranging the metrics in a vector of the form,

FRi = [σRi σ
2
Ri
γRi κRi]1×4 , (2.7)

where i = 1, 2, . . . ,NR + 1. The NM metrics for each subsequence are calculated from,

µ =
1
N

N∑
n=1

x[n] , (2.8)

σ =

√√
1
N

N∑
n=1

(x[n] − µ)2 , (2.9)

σ2 =
1
N

N∑
n=1

(x[n] − µ)2 , (2.10)
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γ =
1

Nσ3

N∑
n=1

(x[n] − µ)3 , (2.11)

κ =
1

Nσ4

N∑
n=1

(x[n] − µ)4 , (2.12)

where x[n] is the nth feature vector element and N is the total number of samples in each

subsequence used to calculate the statistic.

The marker vectors from (2.7) are concatenated to form the composite characteristic

vector for each characteristic and are given by,

F = [FR1

...FR2

...FR3 . . . FRNR+1
]1×[NM×(NR+1)] (2.13)

If only one signal characteristic is used (a, φ, or f ), the expression in (2.13) represents the

final classification fingerprint. When all NC = 3 signal characteristics are used, the final RF

fingerprint is generated by concatenating vectors from (2.13) according to

F = [Fa ... Fφ ... F f ]1×[NM×(NR+1)×NC] (2.14)

The final full-dimensional RF fingerprint (2.14) is a vector comprised of NF features, where

NF = NM × (NR + 1) × NC (2.15)

2.3 Multiple Discriminant Analysis (MDA)

The research methodology presented in Chap. 3 is based on fundamental MDA

concepts described in this section. MDA is a linear method of projecting high-dimensional

data into a lower-dimensional space that best separates data in a least-squares sense [13].

MDA is performed on RF-DNA fingerprints to reduce the feature dimensionality and aid

in the development of a class (device) specific model as described in 3.5.1.

MDA is an extension of Fisher’s Linear Discriminant process when discrimination of

two or more classes is required (NC>2). MDA reduces input feature dimensionality by

projecting NF-dimensional input features into a (NC−1)-dimensional subspace, where it

11



is assumed that NF≥NC. This linear transformation (projection) is performed with a goal

toward maximizing the out-of-class separation (class mean differences) and minimizing

within-class spread (variance within each class) of input data projections [13].

The out-of-class (inter-class, Sb) and within-class (intra-class, Sw) scatter matrices in

MDA are computed as [44],

Sb =

NC∑
i=1

PiΣi , (2.16)

Sw =

NC∑
i=1

Pi(µi − µ0)(µi − µ0)T , (2.17)

with class covariance (Σi) and global mean (µ0) calculated as follows,

Σi = E[(x − µi)(x − µi)T ] , (2.18)

µ0 =

NC∑
i=1

Piµi , (2.19)

where µi is the mean and Pi is the prior probability of each NC class. The within-class

scatter matrix in (2.17) provides a measure of probability-weighted class feature variance

and the out-of-class scatter matrix in (2.16) provides a measure of the average (over all

classes) distance between individual class means from the respective global mean.

The NF-dimensional input RF-DNA fingerprint vectors, F from (2.13), are projected

into the lower (NC−1)-dimensional subspace using,

f̂ = WT F , (2.20)

where W is the NF×(NC−1) transformation (projection) matrix formed from the NC−1

eigenvectors of S−1
w Sb and f̂ is the projected RF-DNA fingerprint. This linear projection

by matrix W results in the optimal ratio between inter-class distances and intra-

class variances [44]. Figure 2.4 shows two possible representative MDA projection

12



transformations (W1 and W2) for NC=3 classes onto a 2-dimensional subspace; for this

illustration W1 provides the “best” class separation.

Figure 2.4: Representative projections for NC=3 classes projected onto 2-dimensional
subspaces using W1 and W2 [13]; W1 is more optimal in this case.

2.4 Maximum Likelihood (ML) Classification

This section describes the ML classification process used in the research methodology

described in Chapter 3. When considering NC>2 classes comprised of NF-dimensional

input features, ML classification can be performed using an MDA-based model described

in Sect. 2.3; the “model” consists of projection matrix W. The available input data set for

each of the NC classes is divided into Training and Testing data sets, with the Training set

used for MDA model development per Sect. 2.3 and Testing set used for ML classification.

For ML classification, the MDA model (W) is first used to project the Training set for

all NC classes into the Fisher space. Class specific projected means (µ̂i) and covariances

(Σ̂i) are then computed for i=1, 2, . . . ,NC. The projected data is assumed to be multivariate

Gaussian distributed with class-dependent means of µ̂i and class-dependent covariances of
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Σ̂i. Alternately, identical covariances can be assumed and a pooled covariance estimate Σ̂P

used for all classes:

Σ̂P =
1

NC

NC∑
i=1

Σ̂i . (2.21)

The assumed MVG distributions effectively represent posterior conditional probabil-

ities that can be used to measure class likelihood for projected Testing fingerprint f̂. For a

pooled covariance estimate, likelihood estimation can be implemented as [33, 44],

P
(
f̂|NCi

)
=

1

(2π)(NC−1)/2 det
(
Σ̂P

)1/2 · exp(Fe) , (2.22)

where,

Fe = −
1
2

(
f̂ − µ̂i

)T (
Σ̂P

)−1 (
f̂ − µ̂i

)
. (2.23)

Class likelihood values are used for ML classification based on Bayesian decision theory

by assigning a class label to subsequent Testing data. In the case of NC classes, a given

projected Testing fingerprint f̂ is assigned to class ci according to,

P
(
ci|f̂

)
> P

(
c j|f̂

)
∀ j , i , (2.24)

where i=1, 2, . . . ,NC and P
(
ci|f̂

)
is the conditional posterior probability that f̂ belongs to

class ci. The conditional posterior probability P
(
ci|f̂

)
is found by applying Bayes’ Rule and

using class likelihood values as shown [33, 44]:

P
(
ci|f̂

)
=

P
(
f̂|ci

)
P(ci)

P
(
f̂
) (2.25)
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where prior probabilities are assumed equal for all classes (P(ci)=1/NC) and thus can be

neglected when making (2.24) comparison. Since (2.25) is applied for a given projected f̂

fingerprint, P
(
f̂
)

remains constant across all ci and can also be neglected as well. Using the

decision criteria from (2.24), projected “testing” fingerprints f̂ are assigned a class label

ci based on maximum posterior probability, with correct classification occurring when the

assigned class label matches the true class label. This ML classification process is used in

the research methodology to perform device classification as described 3.5.2.
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III. Research Methodology

This chapter provides the methodology used to conduct this research and obtain

results presented in Chap. 4. Topics are presented sequentially relative to the

RF-DNA processing overview shown in Fig. 3.1. This process begins with ZigBee

device signal collections made in three different environment scenarios as described

in Section 3.1. Section 3.2 explains the post-processing procedure that is performed

on collected emissions prior to RF-DNA fingerprint generation. Section 3.3 provides

specifics on how ZigBee time-domain features are used to generate RF-DNA fingerprints.

Dimensional Reduction Analysis (DRA) and two quantitative selection methods 1) pre-

classification Kolmogorov-Smirnov (KS)-Test p-value ranking and 2) post-classification

Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) λi relevance

ranking are introduced in Section 3.4. As explained in Section 3.5, RF-DNA fingerprints

were input to a Multiple Discriminant Analysis (MDA) process and the resultant model

used for both Maximum Likelihood (ML) Device Classification (Section 3.5.2) and device

ID verification, specifically Authorized Device ID Verification (Section 3.5.3.1) and Rogue

Device Rejection (Section 3.5.3.2).

3.1 Signal Collection

An Agilent E3238S [2] receiver (Rx) was used to collect emissions from ten Texas

Instruments (TI) CC2420 2.4 GHz IEEE 802.15.4 ZigBee devices (denoted herein as

Dev1, Dev2, ..., Dev10). The Agilent Rx can collect signals at an Radio Frequency (RF)

center frequency spanning fc=20.0 MHz to fc=6.0 GHz using a tunable RF filter with

an instantaneous bandwidth of WRF=36.0 MHz. The selected frequency band is down-

converted to an Intermediate Frequency (IF) of fIF=70 MHz and digitized by an Nb=12 bit

Analog-to-Digital Converter (ADC) operating at a sampling rate of fs=95 Mega-Samples-
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Figure 3.1: Overview of AFIT’s RF-DNA Fingerprinting Process [36].

per-second (MSps), digitally down-converted to near baseband, baseband filtered with a

specific (user defined) bandwidth WBB, and automatically sub-sampled at a rate based on

(WBB) in accordance with Nyquist criteria requirements. All resultant collected samples are

stored as complex In-phase and Quadrature (I-Q) data in a .cap file format [3].

Prior to device signal collections all CC2420 radio transceivers were programmed to

transmit 2.4 GHz IEEE 802.15.4 compliant packets (bursts, pulses, etc.) with an arbitrary

payload at a rate of 14 transmissions-per-second. The arbitrary payload is irrelevant

to this research because RF-DNA fingerprints are generated from the Synchronization

Header (SHR) region within the transmitted bursts. For each transmitting (Tx) CC2420

device, a total of NB=1000 burst responses were collected under three operating conditions,

including: 1) both the Tx and RX antenna inside a Ramsey STE3000B RF shielded
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anechoic chamber (“CAGE”) as done in [11, 31], 2) the Tx and Rx having a clear Line-of-

Sight (“LOS”) path down a hallway–location A in Fig. 3.2 [12]) , and 3) the Tx and Rx on

opposite sides of a wall (“WALL”)–location B shown in Fig. 3.2 [12].

During “Cage” collections the Tx position was consistently maintained at 20 cm

from a dipole antenna in an RF-absorbent Ramsey STE3000B test enclosure that was

connected to the Agilent Rx input by a shielded cable. For the experimental “LOS”

collections (location A), the devices under test (Tx) were placed 5.0 m from a stationary

6 dB gain Ramsey LPY2 log periodic antenna [32] attached to the Rx. For “WALL”

collections (location B), the devices (Tx) were placed behind an interior wall (5.5 m from

Rx) consisting of 1.6 cm-thick drywall separated by 9.2 cm steel studs spaced 40.6 cm

on center, for a total thickness of 12.4 cm, where fiberglass sound batting fills inter-stud

spaces. For both “LOS” and “WALL” collection locations the log periodic antenna was

aligned with the main beam pointing down an office environment hallway at the collection

device locations shown in Fig. 3.2. The collected Signal to Noise Ratio (SNR) over the

Region Of Interest (ROI) was found to be S NRC≈50, 40, 30 dB for “CAGE”, “LOS”, and

“WALL” locations, respectively.

Figure 3.2: Operational indoor collection geometry showing collection receiver antenna
pattern and ZigBee device (A) “LOS” and (B) “WALL” experimental collection locations.
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3.2 Post-Collection Processing

The post-collection processing here was performed similarly to the methodology used

in [12, 31]. The Agilent receiver collection files (.cap format) were converted for use with

MATLAB® (.mat format) and post-collection processed by 1) detecting individual bursts

using an amplitude-based threshold detection process, 2) removing detected bursts from the

collection file, 3) down-converting individual bursts and applying baseband digital filtering,

and 4) power scaling noise to achieve the desired SNR and model the effects of differing

channel conditions. The Additive White Gaussian Noise (AWGN) was digitally filtered the

same as collected bursts and power-scaled to achieve the desired S NR=[0-30] dB. Given

the high collection S NRC over the ROI, the like-filtered AWGN was added directly to the

collected IQ data and was the dominant noise source.

3.2.1 Burst Detection.

The CC2420 devices were programmed to transmit bursts at a rate of approximately 14

bursts-per-second (1 burst every 69 ms) and transmissions were collected from one device

at a time. The Aglient receiver stored the collected transmissions in a .cap file format

which was converted to a .mat file for use in MATLAB®. Detection and extraction of burst

responses were found using a amplitude-based threshold detection process with specific

parameters including: termination threshold (tT ), detection threshold (tD), minimum burst

length (PMIN), and maximum burst length (PMAX). The instantaneous amplitude response

(a[n]) of collected ZigBee bursts was calculated using (2.1) and converted to dB using,

a[n]dB = 20 log10
a[n]
1.0 v

. (3.1)

The result of (3.1) is illustrated in Fig. 3.3 for a collection containing NB=4 bursts

and a typical burst detection termination theshold (tT ). Burst detection begins by finding

the global peak amplitude response CG=max{|a[n]|} ∀ n in a given (.mat) collection file.

Detection threshold tD is then applied as shown in Fig. 3.4 to determine the leading and

trailing edges of a declared burst, these edges correspond to leading/trailing edge sample
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indices (nl, nt) within a[n] at which |a[n]|≈CG − tD occurs. The estimated burst duration

(nt − nl) is calculated and compared to PMIN and PMAX to determine if the declared burst

meets the estimated ZigBee pulse width, PMIN<(nt − nl)<PMAX. If the declared burst meets

all requirements, it becomes a detected burst and is extracted (removed from the collection

file); else, the declared burst is discarded. This iterative process continues by finding the

next maximum peak amplitude value CMAX=max{|a[n]|}, estimating burst duration, and

so on. The detection process is terminated when either 1) the desired number of bursts are

detected, or 2) the condition CMAX<CG−tT occurs for a declared burst indicating max{|a[n]|}

is below the pre-established termination threshold, tT . The specific values used for ZigBee

burst detection are provided in Table 3.1.

Table 3.1: Burst detection parameters for ZigBee transmission collections.

Parameter Variable Value

Termination Threshold tT 6.0 dB

Detection Threshold tD 9.0 dB

Pulse Min Duration PMIN 850 µsec

Pulse Max Duration PMAX 870 µsec
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Figure 3.3: Representative ZigBee collection showing NB=4 bursts and a typical processing
termination threshold (tT ).
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Figure 3.4: Representative detected ZigBee burst and typical detection threshold (tD).
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3.2.2 Digital Filtering.

The detected bursts are down-converted to baseband ( f =0) using a Power Spectral

Density (PSD) average estimated center frequency f̂c for the 16 possible channels spanning

2.4 Ghz to 2.4835 GHz [26]. The down-conversion frequency ( f̂DC) is estimated channel-

by-channel such that bursts within estimated channels are all down-converted by the same

estimated channel frequency. The down-converted signal is then digitally filtered using

a 8th-order Butterworth baseband filter having a −3 dB bandwidth of WBB=1.0 MHz.

Figure 3.5 shows the PSD of a ZigBee baseband emission overlaid with the impulse

response of the Butterworth baseband filter.
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Figure 3.5: Representative ZigBee burst PSD response overlaid with an 8th-order
Butterworth digital filter impulse response.

3.2.3 Signal-to-Noise Ratio Scaling.

The high collected S NRC over the ROI allows for the addition of power-scaled,

like-filtered AWGN to generate analysis signals with S NRA∈[0 30] dB. These analysis

signals allow for classification and verification performance assessment under varying

channel conditions. Using the analytic expression for an arbitrary complex sequence {x(i)},

i=1, 2, . . . ,K, the estimated average power in X is given by,
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X =
1
K

K∑
i=1

x(i)x∗(i) , (3.2)

where x∗(i) is the complex conjugate of x(i). The collected ZigBee signals are complex and

consist of two components,

sc(i) = st(i) + nb(i) , (3.3)

where st(i) and nb(i) are the collected transmitted signal and collected background noise,

respectively. The total power in sc can be calculated as,

S c = S t + Nb , (3.4)

where S c was measured over the ROI and Nb was measured when no signal was present

using (3.2) given by,

S c =
1
K

K∑
i=1

sc(i)s∗c(i) , (3.5)

Nb =
1
K

K∑
i=1

nb(i)n∗b(i) , (3.6)

Rearranging (3.4) the transmitted signal power S t is calculated and the estimated collected

S NR in dB over the ROI is given by,

S NRdB
C = 10 × log10

(
S t

Nb

)
, (3.7)

which yielded S NRC≈50, 40, 30 dB over the ROI region for “CAGE”, “LOS”, and

“WALL” locations collections, respectively.

The desired scaled analysis signal sA(i) is generated by adding zero-mean, like-filtered,

independent AWGN samples according to,

sA(i) = st(i) + nb(i) + nG(i) , (3.8)

where the average power in {nG(i)} is scaled to achieve a desired range of S NRA.
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A complex, zero-mean, normally distributed random sequence with an estimated

average power of 1 (NG=1) produces the AWGN samples. This complex sequence was

digitally filtered by the same Butterworth filter used for the collected signal to produce

like-filtered AWGN samples. The sequence is then power-scaled by Rn to achieve the

desired S NRA, with Rn calculated using,

Rn =

√
10

−S NRA
10 × S t , (3.9)

which results in a total average AWGN power NG given by,

NG =
1
K

K∑
i=1

RnnAWGN(i)Rnn∗AWGN(i) . (3.10)

The corresponding analysis S NRA is then,

S NRdB
A = 10 × log10

(
S t

Nb + NG

)
. (3.11)

For general collection conditions the scaled AWGN power is generally much greater than

the collected background noise power (NG>>Nb) and (3.11) reduces to,

S NRdB
A ≈ 10 × log10

(
S t

NG

)
. (3.12)

3.3 RF Fingerprint Generation

This section provides details on statistical time-domain RF-DNA fingerprint genera-

tion as introduced in Section 2.2. For this research, the ZigBee SHR region was selected as

the ROI given that it 1) was experimentally observed within all bursts collected from all de-

vices and 2) is independent of MAC frame information and payload data. The SHR region

(40 bits total length) is comprised of a preamble sequence (32 bits in length) and the Start-

of-Frame Delimiter (SFD) (8 bits in length) and consisted of 1920 collected time samples.
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For this research the SHR time-domain signals were broken down into NR=80 subregions (2

subregions for each bit) where 24 time samples were contained in each subregion. NR=80

subregions was chosen because it showed improved device discrimination performance

when compared to NR=40 subregions (1 subregion for each bit). Full-dimensional RF-DNA

fingerprints were generated using (2.7) through (2.14) based on NC=3 signal characteristics

(a, φ, f ) and NM=3 statistic metrics (σ2, γ, κ), for a total of NFull=NM×(NR + 1)×NC=729

features per RF-DNA fingerprint. For this research the standard deviation statistic metric

was omitted due to its close relation to variance. Figure 3.6 shows a representative time

domain response for a ZigBee SHR region. The experimentally observed SHR duration of

TS HR≈160 µs is consistent with the IEEE 802.15.4 specification [26].
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Figure 3.6: Representative ZigBee SHR response used as the region of interest for RF-DNA
fingerprint generation.

3.4 Dimensional Reduction Analysis (DRA)

The Fisher-based MDA process in Section 2.3 inherently masks feature contribution to

resultant classification performance and it is impossible to determine which features have

25



the greatest impact. The goal of Dimensional Reduction Analysis (DRA) is to minimize

the number of RF fingerprint features (NF) while achieving a certain classification accuracy.

One approach to minimize the number of features (dimensions) is to use the features that

provide the most significant contribution to classification while removing less relevant

features. Insight into feature relevance is addressed here quantitatively using: 1) a pre-

classification KS-Test goodness-of-fit test [12, 31], and 2) a post-classification feature

relevance ranking provided by GRLVQI processing [33, 36].

The KS-Test goodness-of-fit selection process includes [12, 31]:

1.) Generating a full-dimensional (NF) feature set using (2.14) for NS HR responses

at a specific SNR from each of the ND devices to be classified.

2.) Conducting NPW=[(ND − 1)ND]/2 pairwise two-sample KS-tests using the NF

dimensional feature sets between every two devices under test, and forming a

matrix of resultant p-values with dimension NPW×NF .

3.) Summing each feature’s p-values across pairwise combinations and rank-

ordering the summed p-values from lowest-to-highest while tracking feature

index number.

4.) Determining a summed p-value cutoff threshold, or arbitrarily setting a most

relevant feature length l, to decide which features are retained for classification.

The quantitative pre-classification feature reduction process can be used to identify

and select a most relevant, length l, subset of the full-dimensional RF-DNA feature set F

prior to Multiple Discriminate Analysis, Maximum Likelihood (MDA/ML) classification.

The KS-Test is a suitable option for analyzing statistical features differences and is

used here to quantify differences in Cumulative Distribution Functions (CDF) between

full-dimensional RF-DNA features from two devices. KS-Test results in Section 4.3
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are presented as summed p-values from all pairwise combinations of the ND devices

considered, where lower p-values indicate a more significant data set difference [31].

The second alternative to feature selection is based on GRLVQI processing which

inherently provides an indication of feature relevance following model development. The

process here was adopted entirely from previous demonstrations showing that GRLVQI

is a powerful tool for performing device classification and DRA [33, 38]. The GRLVQI

process provides a relevance indicator (λi value) for each feature comprising the RF-DNA

fingerprint at a specified SNR. The relevance value provides a measure of contribution

to class (device) separation within the GRLVQI classification process. The higher the

relevance value, the greater the impact on class separation. Feature DRA is achieved rank-

ordering λi values and selecting the top-ranked, arbitrary length l, features from the full-

dimensional feature set.

3.5 Device Discrimination Process

Statistical RF-DNA fingerprints for ZigBee device SHR responses are used as inputs

into a device discrimination process. Figure 3.7 shows a block diagram for the device

discrimination process used in this research. This process begins with separating collected

RF fingerprints into “Training” and “Testing” sets, where the “Training” fingerprints are

used for Multiple Discriminant Analysis (MDA) model development. Once a model is

developed, “Testing” fingerprints are projected into the mapped feature space and used for

either 1) Device Classification (a 1 vs. ND “Looks most like?” assessment) or 2) Device ID

Verification (a 1 vs. 1 “Looks how much like?” assessment).

3.5.1 MDA Model Development.

As introduced in Section 2.3, MDA can be applied when discrimination of two or

more classes (devices) is required (ND>2). For results presented in Chapter 4, MDA model

development is performed using a pool of RF-DNA fingerprints from ND=4 ZigBee devices
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Figure 3.7: Block diagram of device discrimination process supporting both classification
and verification using selected measures of similarity and test statistics.

(Dev1, Dev2, Dev3, and Dev4) constructed as a “hybrid” data set of fingerprints from the

“CAGE”, “LOS”, and “WALL” collection scenarios; the result is referred to as a ”hybrid”

MDA model throughout the document. During model development MDA reduces input

feature dimensionality by projecting NF fingerprint features onto a (ND-1)-dimensional

subspace. The MDA projection matrix Wt is developed as shown in Fig. 3.8 using an
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iterative K-fold training process with a goal toward projecting higher-dimensional input

fingerprint F data into a lower dimensional subspace such that inter-class separation is

maximized and intra-class spread is minimized [13]. The parenthetical S NR denotes that

the Wt(S NR), µ̂i(S NR), and Σ̂P(S NR) generally varies with SNR, requiring MDA models

to be developed for each SNR.

Figure 3.8: Signal collection, post-collection and K-fold MDA model development
(training) processes. A representative 2D Fisher space is shown for ND=3 ZigBee devices
operating at S NR=10 dB. Clustering of the 100 projected training fingerprints (o) per
device shown relative to class means (•).

For all results presented in Chapter 4, MDA model development was accomplished by

using a K-fold cross-validation training process, shown in Fig. 3.9, where values of K=5
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and K=10 are commonly used and provide sufficient statistical certainty [25]; a value of

K=5 was used here. The K-fold training process consists of:

1. Randomly Parsing “Training” fingerprints into K blocks.

2. Separating K blocks such that K-1 blocks are used for training and one block is

retained for model validation.

3. Performing MDA transformation on K-1 blocks using projection matrix WK , as

described in Section 2.3.

4. Computing training class (device) means (µ̂i) and pooled covariances (Σ̂P) to be used

for Multivariate Gaussian (MVG) distributed models, as described in Section 2.4.

5. Tracking fold ML classification performance (%CK) using the retained validation

block, as described in Section 2.4.

6. Repeating steps 2-5 such that a different block is retained for validation until K

iterations are completed.

7. Determining the WK and corresponding µ̂i, and Σ̂P that achieved maximum (Best)

classification performance (highest %CK).

3.5.2 Device Classification.

Once MDA model development is accomplished, device classification is performed

using a Maximum Likelihood (ML) classifier as described in Section 2.4, with input

“Testing” fingerprints classified as being affiliated with one of ND=4 possible devices.

For ML classification, the prior probabilities are assumed to be equal, the costs uniform,

and the device likelihoods have a MVG distribution with means (µ̂i) and covariances (Σ̂P)

as computed during MDA model development. The ML classification process consists of:

1) inputting a “Testing” fingerprint F j for a collected emission from an unknown device
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Figure 3.9: Illustration of K-fold cross-validation training process used for MDA model
development. The “best” model WB is selected as the WK yielding maximum %CK .
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D j, 2) projecting F j into the Fisher space using f̂ j = WtF j, and 3) associating f̂ j as being

from the device with the maximum conditional likelihood probability according to,

Di : arg max
i

[
p(Di|f̂ j)

]
(3.13)

where i=1, 2, . . . ,ND and p(Di|f̂ j) is the conditional likelihood probability that fingerprint

f̂ j belongs to device Di. Correct classification is achieved when projected “Testing”

fingerprints are classified to be from their true device. Average percent correct (%C) device

classification is calculated as the percentage of the time the classifier correctly assigns the

fingerprint to its true device over all trials.

3.5.3 Device ID Verification.

For device ID verification (a 1 vs. 1, claimed vs. actual, “Looks how much like?”

assessment), the process used here is consistent with the methodology used in [11, 12, 33].

The focus here is on answering “Does the device’s current RF-DNA fingerprint match the

stored RF fingerprint template associated with its claimed bit-level identity?”. RF-DNA

fingerprints can be used to authenticate a device’s claimed bit-level identity, i.e., a device

wants to access a network and has presented its MAC address, SIM number, IMEI number,

etc., to gain access [11]. Bit-level credentials can be easily replicated by rogue devices,

and RF-DNA fingerprint verification provides a means to mitigate unauthorized access

attempts. This is done by a 1-to-1 comparison of current vs. claimed RF signatures, with

the claimed signature being a stored template associated with the claimed bit-level identity.

Each designated authorized device in a network will have a stored RF signature reference

template that is used when a current “Testing” RF fingerprint is received and has claimed

an ID of a authorized device. The device ID verification process is used here for two

performancwe assessments, including:

1. Authorized Device ID Verification: Granting network access to authorized

devices presenting true bit-level credentials.
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2. Rogue Device Rejection: Denying network access to unauthorized rogue

devices presenting false bit-level credentials.

3.5.3.1 Authorized Device ID Verification.

Authorized device ID verification is an assessment of how similar a device’s current

RF fingerprint matches the stored reference model associated with the claimed identity,

when only considering “Testing” RF fingerprints from a pool of ND authorized devices.

The similarity measure, or verification test statistic (zV) reflects “How well” the current and

claimed RF fingerprint identities match and is compared with a threshold (tV) to verify the

device’s claimed ID and grant or deny network access. Verification test statistics (zV) can

be generated from probability-based measures or geometric measures such as distance,

spatial angle, etc. The specific test statistics used here for Device ID Verification are

inherently provided in the “posterior” output variable of MATLAB® classify function.

The posterior matrix contains normalized conditional Multivariate Gaussian posterior

probabilities given by,

zV =
p(Di|f̂ j)

ND∑
k=1

p(Dk|f̂ j)
, (3.14)

where i = 1, 2, . . . ,ND and f̂ j is the current projected RF fingerprint claiming to have an ID

from device, Di. For this research it is assumed that each authorized device claims ND IDs

(one for each authorized device). For a given “Testing” RF fingerprint this produces ND

test statistics, where one test statistic is from the proper true device and ND−1 test statistics

are from device’s claiming a false ID.

Authorized device ID verification is evaluated one claimed ID at a time, where test

statistics are generated for all ND authorized device’s “Testing” data set producing two

Probability Mass Functions (PMFs): 1) an In-Class PMF, and 2) an Out-of-Class PMF.

Where the In-Class PMF is formed by test statistics (zV) from a device that is actually

who it claims to be, the current RF fingerprint is from the proper authorized device. Each
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authorized device will have a corresponding In-Class PMF and these are known as the

stored true reference templates associated with the authorized device’s ID. Out-of-Class

PMF is generated using (zV) for the case when a authorized device falsely claims an identity

of a different authorized device. Figure 3.10 shows a representative In-Class and Out-of-

Class PMF generated from arbitrary test statistics (zV) for a single claimed ID. The In-

Class probability is defined as p[zV |Ci,D j], where i= j and Ci is the claimed Device ID

(i=1, 2, . . . ,ND) and D j is the actual (current) device. The corresponding Out-of-Class

probability is denoted as p[zV |Ci,D j], where i, j and j=1, 2, . . . ,ND.

Figure 3.10: Representative In-Class (unfilled) and Out-of-Class (filled) Probability Mass
Functions (PMFs) for an arbitrary test statistic (zV). These are used to generate an
Authorized Device ID Verification ROC curve for a specific claimed ID and varying
threshold tv.

Authorized device ID verification is evaluated for all claimed IDs and is assessed using

conventional Receiver Operating Characteristics (ROC) curve analysis [15]. True and false

device ID verification rates are generated by varying the threshold (tV) shown in Fig. 3.10
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and measuring the area of each PMF. True Verification Rate (TVR) is a measure of “how

well” current RF fingerprints match its true claimed ID and is the area under the In-Class

PMF when zV<tV . The corresponding False Verification Rate (FVR) provides a measure

of “how well” current RF fingerprints match a false claimed ID and is the area under the

Out-of-Class PMF when zV<tV . As the threshold (tV) varies, corresponding TVR and FVR

are used to generate a ROC performance curve. As shown in Fig. 3.11, ROC performance

is a function of S NR. Representative thresholds (t1<t2<t3) are shown to emphasis that a

given verification threshold tV dictates TVR and FVR performance.

Figure 3.11: Representative Authorized Device ID Verification ROC curves showing
performance variation as a function of S NR, i.e., degradation for decreasing S NR.

3.5.3.2 Rogue Device Rejection.

Using the same process as authorized device ID verification, Rogue Device Rejection

capability can be measured when a rogue device presents false bit-level credentials in an
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attempt to gain unauthorized network access. Rogue device rejection is an assessment of

how similar unauthorized rogue device’s current RF fingerprint matches the stored true

reference template associated with the claimed identity presented by the rogue device.

“Testing” RF fingerprints are generated for previously unseen NR rogue devices using the

same method describe in this chapter and projected into the (ND-1) Fisher subspace. The

zV test statistics from (3.14) are generated to provide a measure of ”How well” the rogue

device’s current RF fingerprint matches claimed authorized devices RF fingerprint. For

this research it is assumed that each rogue device claims ND IDs (one for each authorized

device). For a given rogue “Testing” RF fingerprint this produces ND test statistics, where

the rogue device claimed a false ID.

Rogue device rejection is evaluated one claimed ID at a time, where test statistics are

generated for a single NR rogue device’s “Testing” data set producing a new Out-of-Class

PMF, that is compared to the stored true reference template (In-Class PMF) associated with

the rogue device’s claimed ID. For a single claimed ID, Fig. 3.12 shows a representative

unchanged In-Class PMF from Fig. 3.10 and the new Out-of-Class PMF generated from

arbitrary test statistics (zV). The In-Class probability is defined as p[zV |Ci,D j], where i= j

and Ci is the claimed Device ID (i=1, 2, . . . ,ND) and D j is the actual (current) device.

The corresponding Out-of-Class probability is denoted as p[zV |Ci,Dk], where k, j and

k,1, 2, . . . ,ND, and Dk is a rogue device.

Rogue device rejection is assessed using conventional ROC curve analysis [15].

Varying the threshold (tV) shown in Fig. 3.12 and measuring the area under the curve for

each PMF will determine the True Verification Rate (TVR) and Rogue Accept Rate (RAR).

TVR is a measure of “how well” current RF fingerprints match its true claimed ID and is

the area under the In-Class PMF when zV<tV . The area under the In-Class-PMF is the same

as shown in Fig. 3.10. The corresponding RAR provides a measure of “how well” current

rogue RF fingerprints match a falsely claimed authorized device ID and is the area under
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Figure 3.12: Representative In-Class (unfilled) PMF from Fig. 3.10 and Out-of-Class
(filled) PMF for arbitrary test statistic zV . These are used to generate an Rogue Device
Rejection ROC curve for a specific claimed ID and selected threshold tv.

the Out-of-Class PMF when zV<tV . The RAR is a measure of “how often” a rogue device is

granted network access when falsely claiming a bit-level identity of a authorized network

device. Rogue Reject Rate (RRR) is defined as RRR=1−RAR; a higher RAR (lower RRR)

reflects poorer security performance. Figure 3.13 shows representative authorized device

ID verification and rogue device rejection ROC performance curves, illustrating the process

of setting a threshold (tV) to achieve a desired TVR corresponds to a given authorized device

false verification rate and a rogue accept rate for a specific claimed ID.
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Figure 3.13: Representative Authorized Device ID Verification and corresponding Rogue
Device Rejection ROC curves. Verification threshold tV is set to achieve desired authorized
device TVR and FVR which maps directly to a corresponding rogue device RAR (RRR)
for a specific claimed ID.
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IV. Results and Analysis

This chapter provides results for ZigBee device discrimination, to include Device

Classification and Device ID Verification using full-dimensional and reduced

dimensional RF-DNA feature sets. The reduced dimensional subsets are obtained through

Dimensional Reduction Analysis (DRA) as described in Sect. 3.4 using a qualitative

phase-only feature selection process as in [11, 31] and two quantitative selection

methods, including: 1) pre-classification Kolmogorov-Smirnov (KS)-Test p-value ranking

and 2) post-classification Generalized Relevance Learning Vector Quantization-Improved

(GRLVQI) feature relevance ranking. Device Classification and Device ID Verification

are performed using the methodology discussed in Section 3.5. Section 4.1 provides the

details how Multiple Discriminant Analysis (MDA) training was accomplished, including

the selection of Training and Testing data sets. Section 4.2 provides baseline Multiple

Discriminate Analysis, Maximum Likelihood (MDA/ML) classification performance using

full-dimensional RF-DNA fingerprints. Section 4.3 provides comparative DRA feature

selection results for the three selection methods considered. Section 4.4 provides

Device Classification results using selected DRA feature sets, and Section 4.5 provides

verification results, including Authorized Device ID Verification and Rogue Device

Rejection performance using DRA reduced feature sets.

4.1 MDA Training and Model Development

MDA training was accomplished using NS HR=500 independent ZigBee Synchronization

Header (SHR) responses collected from each location (“CAGE”, “LOS”, and “WALL”) for

each device used for hybrid model development (Dev1, Dev2, Dev3, Dev4). In addition,

NNz=5 independent, like-filtered, Monte Carlo Noise realizations were added to the SHR

responses for each analysis SNR considered. Thus, for ND=4 devices MDA training, K-
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fold generation of the “best” MDA model (Wt, µ̂i, Σ̂P) and MVG statistics of projected

Training fingerprints, are on a total of NT NG=(500 SHR)×(3 Locations)×(5 NNz)=7500 in-

dependent Training realizations per device. Results for classification are likewise based on

NS HR=500 Testing fingerprints per location for each device and NNz=5 noise realizations

per SNR, resulting in NTS T =7500 Testing realizations. This large number of trials reduced

the CI=95% Confidence Interval (CI) bars to within the vertical extent of the plotted data

markers. Therefore, the CI=95% are intentionally omitted in all plots to enhance visual

clarity and qualitative assessment.

4.2 Device Classification: Full-Dimensional Performance

Full-Dimensional RF-DNA feature sets are based on NC=3 signal characteristics (a,

φ, and f ), NM=3 statistics (σ2, γ, and κ), and NR + 1=81 total regions. Thus, the composite

fingerprint F for each collected emission is comprised of NF=729 RF fingerprint features as

given by (2.14). Figure 4.1 shows the full-dimensional classification Testing performance

for the hybrid location (responses from “CAGE”, “LOS”, and “WALL”) scenario and

S NR∈[0 24] dB. An arbitrary performance benchmark of %C=90% (average across

devices) is achieved at S NR=9.2 dB(≈10.0 dB), with all devices achieving %C=80% or

better classification at this point. Each device classification performance curve shown in

Fig. 4.1 is an average performance across locations (“CAGE”, “LOS”, and “WALL”).

4.3 Device Classification: DRA Feature Selection

Results in Fig. 4.1 show that the arbitrary %C=90% benchmark can be achieved for all

devices at various S NR using a full-dimensional NF=729 feature set, with average cross-

device %C=90% achieved at S NR≈10.0 dB. Feature down-selection was next performed

using DRA to determine the minimum number of features required to maintain average

cross-device %C=90%. Feature relevance was determined using RF fingerprints extracted

from emissions at S NR=10.0 dB (the S NR at which %C=90% in Fig. 4.1). Quantitative
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Figure 4.1: MDA/ML Device Classification performance using a full-dimensional
(NF=729) ZigBee feature set at indicated S NR. The cross-device average is shown and
used for subsequent comparison with DRA performance results.

DRA was performed using the NF=729 full-dimensional feature with 1) pre-classification

KS-Test p-value ranking and 2) post-classification GRLVQI λi feature relevance ranking.

Quantitative DRA enables identification and selection of feature subsets, where the

most relevant features are selected from the full-dimensional feature set. Figure 4.2 shows

the NF=729 full-dimensional ZigBee feature number indices and corresponding relevance

indicators for S NR=10.0 dB using 1) pre-classification KS-Test p-values and 2) post-

classification GRLVQI λi relevance values. Most significant feature relevance is indicated

by a lower summed p-value from the KS-Test and a higher λi from the GRLVQI process.

The DRA process simply involves sorting Fig. 4.2 results to establish a rank-ordering that

can be used to select a desired number of most relevant features.
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4.4 Device Classification: DRA Performance

Previous research [11, 31] has qualitatively shown that ZigBee phase-derived features

possess greater discriminating information than either amplitude-derived or frequency-

derived features when used with an MDA/ML classifer. As detailed in Section 3.3, the

full-dimensional ZigBee feature set consists of NF=729 total features, including NF̂=243

amplitude, phase, and frequency features. Figure 4.3 displays DRA subsets comprised

of NF̂=243 selected features and their corresponding indices for 1) qualitative phase-only

feature selection, 2) quantitative KS-Test top-ranked feature selection, and 3) quantitative

GRLVQI top-ranked feature selection.

Figure 4.4 shows average Device Classification performance using the NF=729 full-

dimensional feature set and the DRA≈66% subsets (NF̂=243 features retained) shown in

Fig. 4.3. Relative to full-dimensional performance, the DRA≈66% subsets yield relatively

consistent classification performance and exhibit a “gain” of G≈−1.0 dB at the %C=90%

benchmark; the “gain” metric is introduced here for comparative assessment and defined

as the difference, expressed in dB, in required S NR (dB) for two systems, methods, etc., to

achieve a specified performance %C.

Further reduction of RF-DNA fingerprint dimensionality is obtained using the top-

ranked NF̂=200, 100, 50, and 25 features that were quantitatively selected using the 1) pre-

classification KS-Test and 2) post-classification GRLVQI relevance rankings. Figure 4.5

displays the top-ranked NF̂=243, 200, 100, 50, and 25 features from both quantitative DRA

methods and their corresponding index number within the full-dimensional feature set.
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Figure 4.2: Unsorted DRA feature relevance indicators: (a) KS-Test p-values and
(b) GRLVQI λi relevance values. Results shown here for S NR=10.0 dB which corresponds
to a cross-device %C≈90% in Fig. 4.1.
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Figure 4.3: DRA Selected NF̂=243 subsets of full-dimensional (NF=729) feature set.
Selection based on 1) qualitative phase-only, 2) quantitative top-ranked KS-Test, and
3) quantitative top-ranked GRLVQI feature selection methods.
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Figure 4.4: Average MDA/ML device classification performance using DRA selected
NF̂=243 feature subsets shown in Fig. 4.3. Full-dimensional NF=729 performance from
Fig. 4.1 provided for comparison.
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(a) Pre-Classification KS-Test.
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Figure 4.5: Illustration of top-ranked NF̂=243, 200, 100, 50, and 25 DRA feature subsets
using (a) pre-classification KS-Test and (b) post-classification GRLVQI rankings.
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The effect of additional feature reduction and assessment of hybrid location classi-

fication performance is shown in Fig. 4.6 using DRA subsets containing the top-ranked

NF̂=243, 200, 100, 50 and 25 features that were quantitatively selected using 1) pre-

classification KS-Test and 2) post-classification GRLVQI relevance rankings. Considering

the previously established %C=90% benchmark for assessing DRA classification perfor-

mance, results in Fig. 4.6 show that:

1. The required S NR for KS-Test top-ranked NF̂=243 and NF̂=50 feature sets

approximately spans S NR∈[10 18] dB, with the top-ranked NF̂=25 feature set never

achieving the %C=90% benchmark. This is an indication that the MDA model

development process is unable to achieve adequate inter-class separation and/or

sufficient intra-class spread minimization using only NF̂=25 features.

2. The required S NR for GRLVQI top-ranked NF̂=243 and NF̂=50 feature sets

approximately spans S NR∈[10 18] dB which is consistent with KS-Test feature

selection performance. However, the GRLVQI top-ranked NF̂=25 feature set also

achieves the %C=90% benchmark at S NR≈30 dB.

The KS-Test and GRLVQI feature selection performances in Fig. 4.6 are summarized

in Table 4.1 which shows the “Gain” for each DRA case relative to performance using the

DRA≈66% reduced NF̂=243 feature set.
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(a) KS-Test Feature Selection.
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(b) GRLVQI Feature Selection.

Figure 4.6: MDA/ML Device Classification performance using DRA subsets from Fig. 4.5
selected by (a) KS-Test p-values and (b) GRLVQI λi relevance values. Average NF̂=243
DRA performance from Fig. 4.4 provided for comparison.
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Table 4.1: MDA/ML Device Classification performance “Gain” (dB) for DRA subsets in
Fig. 4.6 relative to performance using the DRA NF̂=243 feature subset.

DRA Method
Number of DRA Features (NF̂)

243 200 100 50 25

KS-Test 0.0 dB -0.2 dB -2.6 dB -6.1 dB N/A

GRLVQI 0.0 dB -0.3 dB -1.9 dB -6.75 dB -17.8 dB

4.5 Device ID Verification

Verification of a device’s claimed bit-level ID provides a means for granting authorized

devices network access while denying access to unauthorized devices. It is assumed here

that a device wanting to gain network access provides a claimed bit-level ID and that RF-

DNA features can be used to authenticate the claimed ID. The Device ID Verification

process performs a 1-to-1 comparison between a device’s current RF-DNA fingerprint

and a stored reference fingerprint for the claimed bit-level ID. Device ID verification is

accomplished here using the methodology described in Section 3.5.3 and emissions from

10 ZigBee devices, including: 1) the same ND=4 authorized devices used previously for

device classification assessment (Dev1, Dev2, Dev3, and Dev4), and 2) an additional

NR=6 unauthorized “rogue” devices (Dev5, Dev6, Dev7, Dev8, Dev9 and Dev10). The

verification process is used to assess both Authorized Device ID Verification performance

using the ND=4 authorized devices, and Rogue Device Rejection performance using the

NR=6 rogue devices. Of particular importance is that the hybrid MDA model developed in

Sect. 4.1 for Device Classification is also used here for verification assessment.

4.5.1 Authorized Device ID Verification.

Authorized device ID verification is performed using the same independent NTS T =7500

projected Testing fingerprints from classification for each of the ND=4 authorized devices.
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Verification performance is evaluated at S NR=18.0 dB using NF̂=50 DRA reduced fea-

ture sets selected by rank ordering 1) pre-classification KS-Test p-values and 2) post-

classification GRLVQI λi relevance values.

For ROC curve generation and analysis, each of the ND authorized devices presents

a true claimed ID for itself, as well as, a false claimed ID for the other authorized

devices (e.g., Dev1 presents a claimed ID for Dev1, Dev2, Dev3, and Dev4). For a

specific claimed bit-level ID, NTS T =7500 projected Testing fingerprints from each of the

ND authorized devices are used to generate (NTS T =7500)×(ND=4)=30000 normalized

Multivariate Gaussian posterior probability test statistics according to (3.14). The

collection of test statistics are used to create the In-Class and Out-of-Class Probability Mass

Functions (PMFs) described in Section 3.5.3 for the specific claimed ID. For example, the

In-Class PMF is constructed from 7500 test statistics where the current RF-DNA fingerprint

is indeed from the true claimed device ID; this same In-Class PMF is subsequently used

for Rogue Device Rejection assessment in Sect. 4.5.2. The associated Out-of-class PMF

is constructed from 22500 test statistics where the current RF-DNA fingerprint is from a

falsely claimed device ID. Representative PMFs are presented in Fig. 4.7 for one specific

case where all ND=4 authorized devices present claimed bit-level IDs for Dev2. The

resultant In-Class and Out-of-Class PMFs are used to produce one Authorized Device ID

Verification Receiver Operating Characteristics (ROC) curve.

Figure 4.8 shows Authorized Device ID Verification performance for each of the ND=4

authorized ZigBee devices for a DRA reduced feature set of NF̂=50 features selected using

1) pre-classification KS-Test values, and 2) post-classification GRLVQI relevance rankings.

The verification ROC curves were generated at S NR=18 dB which corresponds to the

%C=90% benchmark in Fig. 4.6 using the same feature set. The ND=4 ROC curves show

that there exists a device-dependent verification threshold tV(m) such that all authorized
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(a) In-Class PMF: Device 2, 7,500 Testing RF-DNA fingerprints.
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(b) Out-of-Class PMF: Devices (1,3,4), 22,500 Testing RF-DNA fingerprints.

Figure 4.7: In-Class and Out-of-Class PMFs for Claimed ID = Device 2. Generated from
test statistic zV in (3.14) for KS-Test top-ranked NF̂=50 features at S NR=18 dB.

device IDs can be verified at True Verification Rate (TVR>90%) and False Verification

Rate (FVR<10%) for both methods considered.
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(a) KS-Test Feature Selection.
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(b) GRLVQI Feature Selection.

Figure 4.8: ZigBee Authorized Device ID Verification for ND=4 authorized devices
operating at S NR=18.0 dB (%C≈90% in Fig. 4.6) using top-ranked NF̂=50 features from
(a) pre-classification KS-Test and (b) post-classification GRLVQI selection methods.
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4.5.2 Rogue Device Rejection.

The ability to use RF-DNA to reject unauthorized rogue devices presenting false bit-

level identities is demonstrated using the same ID verification process used for authorized

devices. Rogue Device Rejection is an assessment of “how well” current RF-DNA

fingerprints from a pool of rogue (previously unseen and unauthorized) devices match

RF-DNA fingerprints associated with the claimed ID of an authorized device. This is

demonstrated here using NR=6 (Dev5, Dev6, Dev7, Dev8, Dev9, Dev10) unauthorized

rogue devices whose emissions were collected under various conditions (“CAGE”, “LOS”,

and “WALL”). A total of NTS T =(1000 S HR)×(1 Location)×(5 NNz)=5000 previously

unseen RF-DNA fingerprint realizations were used for each of the NR devices. Table 4.2

lists the 9 ZigBee device ID and collection condition combinations that were considered

using the NR=6 rogue devices. For each of the 9 different combinations, the rogue device

presented a claimed ID for each of the ND=4 authorized device, producing a total of 36

Rogue Device Rejection scenarios.

Table 4.2: Nine ZigBee Device ID and collection condition combinations used for Assess-
ing Rogue Device Rejection capability. Grey cells correspond untested combinations.

ZigBee ID CAGE LOS WALL

Dev5 X X

Dev6 X X

Dev7 X X

Dev8 X

Dev9 X

Dev10 X
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For a specific claimed bit-level ID, NTS T =5000 projected Testing fingerprints from a

rogue device are used to generate 5000 test statistics using (3.14). The collection of test

statistics are used to construct the Out-of-Class PMF which is used with the corresponding

claimed ID In-Class PMF generated as part of the Authorized Device ID Verification

process in Sect. 4.5.1. The resultant PMFs are used to produce one ROC performance

curve. As detailed in the following two subsections, Rogue Device Rejection capability

was assessed using each of the DRA feature selection methods.

4.5.2.1 KS-Test Selected Features.

Results for Rogue Device Rejection assessment using the KS-Test DRA selected

features are presented in Fig. 4.9. These results include the 36 rogue scenarios using top-

ranked NF̂=25, 50, 100 feature sets at S NR=18.0 dB. These are conventional ROC curves

presented as True Verification Rate (TVR) versus Rogue Accept Rate (RAR), where Rogue

Reject Rate is defined as RRR=1−RAR; a higher RAR (lower RRR) reflects greater rogue

access and poorer network security performance. Authorized Device ID Verification ROC

curves are provided alongside the rogue device ID ROC curves to enable identification of

the fixed threshold that achieves authorized device TVR>90% and direct mapping to the

corresponding RAR (RRR) for each rogue scenario. The solid black curves in Fig. 4.9 (b),

(d), and (f) correspond to rogue scenarios that achieve an arbitrary RAR<10% (RRR>90%)

performance benchmark when the threshold is fixed such that TVR>90%. As indicated,

performance using NF̂=25, 50, 100 KS-Test feature sets achieved the arbitrary RRR>90%

benchmark in 21, 29, and 30 out of the 36 rogue scenarios, respectively. Table 4.3

through Table 4.5 highlight rogue scenarios which fail to achieve the arbitrary RRR>90%

performance benchmark using selected DRA feature subsets.
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(a) Authorized ID Verification: NF̂=25.
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(b) Rogue Device Rejection: NF̂ = 25.
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(c) Authorized ID Verification: NF̂=50.
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(d) Rogue Device Rejection: NF̂=50.
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(e) Authorized ID Verification: NF̂=100.
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(f) Rogue Device Rejection: NF̂=100.

Figure 4.9: Performance using KS-Test selected features (NF̂=25, 50, 100) for ND=4
authorized devices and NR=6 unauthorized rogue devices in various operating scenarios
falsely claiming each of the ND=4 authorized device IDs (36 total rogue scenarios). Grey
ROC curves correspond to rogue scenarios where RAR<10% (RRR>90%) is not achieved.
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Table 4.3: ZigBee device ID and collection condition combinations from Table 4.2 where
Rogue Device Rejection performance in Fig. 4.9 fails to meet RAR<10% (RRR>90%) with
NF̂=25 features selected using KS-Test DRA at S NR=18 dB. The numbers correspond to
the Rogue device claimed ID and indicate failure for 15 of 36 rogue scenarios.

ZigBee ID CAGE LOS WALL

Dev5 3 1,3

Dev6 1,3 1,3

Dev7 1,3 1,3

Dev8 1

Dev9 1

Dev10 3,4

Table 4.4: ZigBee device ID and collection condition combinations from Table 4.2 where
Rogue Device Rejection performance in Fig. 4.9 fails to meet RAR<10% (RRR>90%) with
NF̂=50 features selected using KS-Test DRA at S NR=18 dB. The numbers correspond to
the Rogue device claimed ID and indicate failure for 7 of 36 rogue scenarios.

ZigBee ID CAGE LOS WALL

Dev5 3 1

Dev6 3

Dev7 1

Dev8 1

Dev9 1

Dev10 4
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Table 4.5: ZigBee device ID and collection condition combinations from Table 4.2 where
Rogue Device Rejection performance in Fig. 4.9 fails to meet RAR<10% (RRR>90%) with
NF̂=100 features selected using KS-Test DRA at S NR=18 dB. The numbers correspond to
the Rogue device claimed ID and indicate failure for 6 of 36 rogue scenarios.

ZigBee ID CAGE LOS WALL

Dev5 3 1

Dev6 3

Dev7 1

Dev8

Dev9 1

Dev10 4
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4.5.2.2 GRLVQI Selected Features.

Results for Rogue Device Rejection assessment using the GRLVQI DRA selected

features are presented in Fig. 4.10. These results include the 36 rogue scenarios using top-

ranked NF̂=25, 50, 100 feature sets at S NR=18.0 dB. As with KS-Test results presented in

Sect. 4.5.2.1, an arbitrary RRR>90% benchmark is used for comparative assessment at an

Authorized Device ID Verification operating point of TVR>90%. The solid black curves in

Fig. 4.10 (b), (d), and (f) correspond to rogue scenarios that achieve the arbitrary RRR>90%

benchmark for a fixed threshold yielding TVR>90%. As indicated, performance using

NF̂=25, 50, 100 GRLVQI feature sets achieved the arbitrary RRR>90% benchmark in 23,

28, and 30 out of the 36 rogue scenarios, respectively. Table 4.6 through Table 4.8 highlight

rogue scenarios which fail to achieve the arbitrary RRR>90% performance benchmark

using selected DRA feature subsets.
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(a) Authorized ID Verification: NF̂=25.
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(b) Rogue Device Rejection: NF̂=25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Verification Rate (FVR)

T
ru

e 
V

er
if

ic
at

io
n 

R
at

e 
(T

V
R

)

 

 

Device 1

Device 2

Device 3

Device 4

(c) Authorized ID Verification: NF̂=50.
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(d) Rogue Device Rejection: NF̂=50.
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(e) Authorized ID Verification: NF̂=100.
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(f) Rogue Device Rejection: NF̂=100.

Figure 4.10: Performance using GRLVQI selected features (NF̂=25, 50, 100) for ND=4
authorized devices and NR=6 unauthorized rogue devices in various operating scenarios
falsely claiming each of the ND=4 authorized device IDs (36 total rogue scenarios). Grey
ROC curves correspond to rogue scenarios where RAR<10% (RRR>90%) is not achieved.
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Table 4.6: ZigBee device ID and collection condition combinations from Table 4.2 where
Rogue Device Rejection performance in Fig. 4.9 fails to meet RAR<10% (RRR>90%) using
NF̂=25 features selected using GRLVQI DRA at S NR=18 dB. The numbers correspond to
the Rogue device claimed ID and indicate failure for 13 of 36 rogue scenarios.

ZigBee ID CAGE LOS WALL

Dev5 3 1

Dev6 3 3,4

Dev7 1,3 1,3

Dev8 1

Dev9 1

Dev10 3,4

Table 4.7: ZigBee device ID and collection condition combinations from Table 4.2 where
Rogue Device Rejection performance in Fig. 4.9 fails to meet RAR<10% (RRR>90%) with
NF̂=50 features selected using GRLVQI DRA at S NR=18 dB. The numbers correspond to
the Rogue device claimed ID and indicate failure for 8 of 36 rogue scenarios.

ZigBee ID CAGE LOS WALL

Dev5 3 1

Dev6 3 3

Dev7 1

Dev8

Dev9 1

Dev10 3,4
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Table 4.8: ZigBee device ID and collection condition combinations from Table 4.2 where
Rogue Device Rejection performance in Fig. 4.9 fails to meet RAR<10% (RRR>90%) with
NF̂=100 features selected using GRLVQI DRA at S NR=18 dB. The numbers correspond
to the Rogue device claimed ID and indicate failure for 6 of 36 rogue scenarios.

ZigBee ID CAGE LOS WALL

Dev5 3 1

Dev6 3

Dev7 1

Dev8

Dev9 1

Dev10 4
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V. Summary and Conclusions

This chapter provides a summary of research activities, research contributions, and

recommendations for further research.

5.1 Summary

This research was conducted to expand AFIT’s RF “Distinct Native Attribute” DNA

(RF-DNA) fingerprinting process to support IEEE 802.15.4 ZigBee communication system

applications. ZigBee-based wireless networks are energy efficiency, low complexity,

low cost, and widely deployed in many applications, including energy management and

efficiency, home, building, and industrial control automation, and home area networks to

name a few [14, 45, 46]. As ZigBee networks continue to increase in popularity, higher

levels of security become essential and are critical to protect sensitive personal information

and physical system access. The particular security concern addressed under this research

is the exploitation of bit-level device identities (ID) to gain unauthorized network access.

To counter bit-level “spoofing” attacks, RF-DNA fingerprints are extracted from

Physical (PHY) waveform features and used to achieve human-like discrimination of

ZigBee network devices in a typical operational environment. By designating certain

devices as authorized and others as unauthorized, ZigBee network vulnerability to

outsider threats is assessed using Receiver Operating Characteristic (ROC) curves to

characterize both Authorized Device ID Verification performance (granting network access

to authorized users presenting true bit-level credentials) and Rogue Device Rejection

performance (denying network access to unauthorized rogue devices presenting false bit-

level credentials).

For demonstrations here, emissions were collected from TI CC2420 ZigBee devices

operating under three environmental scenarios: 1) “CAGE”–devices and collection receiver
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antenna both in an anechoic chamber, 2) “LOS”–devices within Line-of-Sight of the

collection receiver antenna, and 3) “WALL”–devices placed behind a wall relative to the

collection receiver antenna. For each device, RF-DNA fingerprint features were extracted

from a “hybrid” pool of emissions containing emissions from each of the operational

environments. The hybrid features were used for Multiple Discriminant Analysis (MDA)

model development and Maximum Likelihood (ML) Device Classification performed using

both full-dimensional and Dimensional Reduction Analysis (DRA) reduced dimensional

RF-DNA fingerprints. The DRA reduced sets were selected using a 1) pre-classification

Kolmogorov-Smirnov (KS)-test process and 2) post-classification Generalized Relevance

Learning Vector Quantization-Improved (GRLVQI) feature relevance ranking process. The

same hybrid MDA/ML model was used in a verification process for assessing Authorized

Device ID Verification and Rogue Device Rejection. In both cases, devices attempt to gain

network access by providing bit-level ID credentials (ZigBee MAC address); authorized

devices present true bit-level IDs while rogue devices present false bit-level IDs matching

authorized device IDs. The 1 vs. 1 verification process extracts RF-DNA fingerprints

from a current device emission and compares it with stored RF-DNA fingerprint for the

claimed ID. Network access is granted (rightly or wrongly) based on a measure of similarity

(test statistic) that provides a “Looks how much like?” assessment of the two RF-DNA

fingerprints.

5.2 Conclusions

Using device RF-DNA features remains a viable alternative for augmenting bit-level

security protocols. This is supported by results here which show that RF-DNA from IEEE

802.15.4 Zigbee emissions can be used as inputs to an MDA/ML discrimination process

to perform reliable 1 vs. ND “Looks most like?” classification assessment, as well as

1 vs. 1 “Looks how much like?” verification assessment. Performance was first assessed

with an MDA/ML model developed using features from a “hybrid” pool of emissions from
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ND=4 devices and full-dimensional RF-DNA fingerprints comprised of NF=729 features.

Device Classification performance achieved an arbitrary benchmark of average correct

classification %C>90% (across all devices) for S NR≥10.0 dB, with individual devices

achieving %C>80% at this same S NR.

The full-dimensional NF=729 feature set was reduced using DRA and resultant clas-

sification and verification performance assessed. The top-ranked NF̂=243 ZigBee feature

subset was qualitatively selected according to related work in [31], and quantitatively se-

lected using two methods, including: 1) pre-classification KS-Test p-value ranking [12, 31],

and 2) post-classification GRLVQI λi relevance ranking [12, 33, 36]. Hybrid MDA/ML De-

vice Classification performance using these DRA≈66% reduced subsets was marginally

poorer than full dimensional performance and reflected a “gain” of G≈−1.0 dB at the

%C=90% benchmark; gain is defined herein as the reduction in required S NR, expressed

in dB, for two systems, methods, etc., to achieve a given %C performance. Thus, the im-

plementation trade-off is a 66% reduction in the number of features (computational com-

plexity, storage, etc., reduction) at the expense of requiring an additional S NR≈1.0 dB

improvement in channel conditions.

Additional quantitative KS-Test and GRLVQI DRA feature selection was performed

and classification performance assessed using the top-ranked NF̂=200, 100, 50, and 25

features. Relative to the %C>90% benchmark [12]:

1. The KS-Test selected feature sets required S NR≈10.0 dB (NF̂=243) to S NR≈18.0 dB

(NF̂=50), with results for NF̂=25 failing to meet the benchmark.

2. The GRLVQI selected feature sets required the same S NR≈10.0 dB (NF̂=243)

to S NR≈18.0 dB (NF̂=50), with results for NF̂=25 achieving the benchmark at

S NR≈30.0 dB.

Hybrid MDA/ML verification performance was assessed for 1) ND=4 authorized

network devices and 2) NR=6 unauthorized (rogue) network devices. Performance was
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evaluated using the NF̂=50 DRA feature set at S NR=18.0 dB given that the %C=90%

benchmark was achieved under these conditions. ROC curve analysis for Authorized

Device ID Verification indicated that there exists a device dependent threshold tV(m) for all

authorized devices such that a True Verification Rate of TVR>90% and False Verification

Rate of FVR<10% are realized for both DRA methods; this range of TVR and FVR was

arbitrarily selected for comparative assessment.

Rogue Device Rejection capability was assessed using NR=6 unauthorized devices

placed in nine collection combinations of various experimental “CAGE”, “LOS”, and

“WALL” locations, with each rogue device falsely presenting a claimed ID matching

each of the ND=4 authorized IDs; a total of 36 rogue assessment scenarios. Considering

an arbitrary Rogue Rejection Rate of RRR>90%, ROC curve analysis for Rogue Device

Rejection indicated that performance using KS-Test and GRLVQI selected feature sets was

consistent. Specific performance included [12]:

1. The KS-test selected feature sets achieving RRR>90% in 21, 29, and 30 of the 36

rogue scenarios using NF̂=100, 50, and 25 top-ranked features, respectively.

2. The GRLVQI selected feature sets achieving RRR>90% in 23, 28, and 30 of the 36

rogue scenarios using NF̂=100, 50, and 25 top-ranked features, respectively.

5.3 Recommendations for Future Research

This research provides a proof-of-concept demonstration that highlights the promise

for augmenting ZigBee bit-level security mechanisms. This was done using RF-DNA

features with an MDA/ML discrimination process. The work here is by no means complete

and there are several potential directions that future research could take:

1. Performing a detailed assessment of ZigBee GRLVQI DRA–Results here for

dimensionally reduced feature sets were based on two separate rank-ordering and

selection methods (pre-classification KS-Test and post-classification GRLVQI) being
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developed in parallel under AFIT’s RF Intelligence (RFINT) program. GRLVQI

parameter settings and model development were not optimized for ZigBee emissions

as part of this research. Further analysis and GRLVQI optimization could be done to

better exploit feature set dependence, or independence, as collection location varies

(“CAGE”, “LOS”, “WALL”) and environmental conditions change.

2. Increasing the number of model training devices–An iterative process should be

considered for progressively expanding the pool of authorized devices being used

for model development. The less than perfect Rogue Device Rejection performance

here (RRR,100%) was not too surprising given that 1) MDA model development

is a classification-based versus verification-based optimization process and similar

results have been observed using other signals, and 2) only ND=4 authorized devices

were used for hybrid MDA/ML model development; it is highly unlikely that RF-

DNA features from ND=4 population members of a larger population (thousands or

even millions) accurately capture population behavior and provide broad human-like

discrimination. Increasing the sample size (training devices) will allow the developed

models to better represent the larger device population.

3. Considering alternate test statistics–Results here are based exclusively on inherent

MATLAB functionality for implementing MDA model development and performing

ML classification assessment (classify function), as well as, ROC curve (roc function)

verification performance assessment; the inherent normalized MVG posterior

probability similarity measure was used exclusively as the test statistic. There

are a myriad of additional probability-based, as well as distance-based, similarity

measures that could be considered and which may improve overall performance.
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